Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
IEEE J Biomed Health Inform ; 24(10): 2798-2805, 2020 10.
Article in English | MEDLINE | ID: covidwho-2282971

ABSTRACT

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE), AUC, precision and F1-score achieved by our method are 91.79%, 93.05%, 89.95%, 96.35%, 93.10% and 93.07%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/diagnosis , Tomography, X-Ray Computed/statistics & numerical data , COVID-19 , COVID-19 Testing , Computational Biology , Coronavirus Infections/classification , Databases, Factual/statistics & numerical data , Deep Learning , Humans , Neural Networks, Computer , Pandemics/classification , Pneumonia, Viral/classification , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , SARS-CoV-2
2.
IEEE Trans Med Imaging ; 41(1): 88-102, 2022 01.
Article in English | MEDLINE | ID: covidwho-1593541

ABSTRACT

Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Tomography, X-Ray Computed
3.
Med Image Anal ; 69: 101978, 2021 04.
Article in English | MEDLINE | ID: covidwho-1062515

ABSTRACT

How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering from the pandemic around the world. Currently, the chest CT is regarded as a popular and informative imaging tool for COVID-19 diagnosis. However, we observe that there are two issues - weak annotation and insufficient data that may obstruct automatic COVID-19 severity assessment with CT images. To address these challenges, we propose a novel three-component method, i.e., 1) a deep multiple instance learning component with instance-level attention to jointly classify the bag and also weigh the instances, 2) a bag-level data augmentation component to generate virtual bags by reorganizing high confidential instances, and 3) a self-supervised pretext component to aid the learning process. We have systematically evaluated our method on the CT images of 229 COVID-19 cases, including 50 severe and 179 non-severe cases. Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity and 96.4% specificity, which outperformed previous works.


Subject(s)
COVID-19/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Deep Learning , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Supervised Machine Learning , Tomography, X-Ray Computed , Young Adult
4.
Med Image Anal ; 68: 101910, 2021 02.
Article in English | MEDLINE | ID: covidwho-943426

ABSTRACT

The coronavirus disease, named COVID-19, has become the largest global public health crisis since it started in early 2020. CT imaging has been used as a complementary tool to assist early screening, especially for the rapid identification of COVID-19 cases from community acquired pneumonia (CAP) cases. The main challenge in early screening is how to model the confusing cases in the COVID-19 and CAP groups, with very similar clinical manifestations and imaging features. To tackle this challenge, we propose an Uncertainty Vertex-weighted Hypergraph Learning (UVHL) method to identify COVID-19 from CAP using CT images. In particular, multiple types of features (including regional features and radiomics features) are first extracted from CT image for each case. Then, the relationship among different cases is formulated by a hypergraph structure, with each case represented as a vertex in the hypergraph. The uncertainty of each vertex is further computed with an uncertainty score measurement and used as a weight in the hypergraph. Finally, a learning process of the vertex-weighted hypergraph is used to predict whether a new testing case belongs to COVID-19 or not. Experiments on a large multi-center pneumonia dataset, consisting of 2148 COVID-19 cases and 1182 CAP cases from five hospitals, are conducted to evaluate the prediction accuracy of the proposed method. Results demonstrate the effectiveness and robustness of our proposed method on the identification of COVID-19 in comparison to state-of-the-art methods.


Subject(s)
COVID-19/diagnostic imaging , Community-Acquired Infections/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Machine Learning , Pneumonia, Viral/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed , China , Community-Acquired Infections/virology , Datasets as Topic , Diagnosis, Differential , Humans , Pneumonia, Viral/virology , SARS-CoV-2
5.
IEEE Trans Med Imaging ; 39(8): 2595-2605, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-690930

ABSTRACT

The coronavirus disease (COVID-19) is rapidly spreading all over the world, and has infected more than 1,436,000 people in more than 200 countries and territories as of April 9, 2020. Detecting COVID-19 at early stage is essential to deliver proper healthcare to the patients and also to protect the uninfected population. To this end, we develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT). In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses. Note that there exists imbalanced distribution of the sizes of the infection regions between COVID-19 and CAP, partially due to fast progress of COVID-19 after symptom onset. Therefore, we develop a dual-sampling strategy to mitigate the imbalanced learning. Our method is evaluated (to our best knowledge) upon the largest multi-center CT data for COVID-19 from 8 hospitals. In the training-validation stage, we collect 2186 CT scans from 1588 patients for a 5-fold cross-validation. In the testing stage, we employ another independent large-scale testing dataset including 2796 CT scans from 2057 patients. Results show that our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%. With this performance, the proposed algorithm could potentially aid radiologists with COVID-19 diagnosis from CAP, especially in the early stage of the COVID-19 outbreak.


Subject(s)
Coronavirus Infections/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Pneumonia, Viral/diagnostic imaging , Algorithms , Betacoronavirus , COVID-19 , Community-Acquired Infections/diagnostic imaging , Humans , Pandemics , ROC Curve , Radiography, Thoracic , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL